Copied to
clipboard

G = C22.S5order 480 = 25·3·5

The non-split extension by C22 of S5 acting via S5/A5=C2

non-abelian, not soluble

Aliases: C22.S5, CSU2(𝔽5)⋊2C2, SL2(𝔽5).4C22, C2.11(C2×S5), C2.S52C2, (C2×SL2(𝔽5))⋊3C2, SmallGroup(480,953)

Series: ChiefDerived Lower central Upper central

C1C2C22C2×SL2(𝔽5) — C22.S5
SL2(𝔽5) — C22.S5
SL2(𝔽5) — C22.S5
C1C2C22

Subgroups: 646 in 66 conjugacy classes, 8 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C8, C2×C4, D4, Q8, C10, Dic3, C12, D6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, Dic5, C2×C10, SL2(𝔽3), Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C8.C22, C5⋊C8, C2×Dic5, CSU2(𝔽3), GL2(𝔽3), C2×SL2(𝔽3), D42S3, C22.F5, Q8.D6, SL2(𝔽5), CSU2(𝔽5), C2.S5, C2×SL2(𝔽5), C22.S5
Quotients: C1, C2, C22, S5, C2×S5, C22.S5

Character table of C22.S5

 class 12A2B2C34A4B4C56A6B6C8A8B10A10B10C12
 size 112202020303024204040606024242440
ρ1111111111111111111    trivial
ρ211-111-11-1111-1-11-1-11-1    linear of order 2
ρ311-1-1111-111-1-11-1-1-111    linear of order 2
ρ4111-11-11111-11-1-1111-1    linear of order 2
ρ5444-21-200-111100-1-1-11    orthogonal lifted from S5
ρ644421200-11-1100-1-1-1-1    orthogonal lifted from S5
ρ744-421-200-11-1-10011-11    orthogonal lifted from C2×S5
ρ844-4-21200-111-10011-1-1    orthogonal lifted from C2×S5
ρ94-400-2000-1200005-510    symplectic faithful, Schur index 2
ρ104-400-2000-120000-5510    symplectic faithful, Schur index 2
ρ1155-51-1-11-10-1111-1000-1    orthogonal lifted from C2×S5
ρ1255-5-1-111-10-1-11-110001    orthogonal lifted from C2×S5
ρ135551-11110-11-1-1-10001    orthogonal lifted from S5
ρ14555-1-1-1110-1-1-111000-1    orthogonal lifted from S5
ρ15666000-2-21000001110    orthogonal lifted from S5
ρ1666-6000-22100000-1-110    orthogonal lifted from C2×S5
ρ178-8002000-2-200000020    symplectic faithful, Schur index 2
ρ1812-1200000020000000-20    symplectic faithful, Schur index 2

Smallest permutation representation of C22.S5
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 41 31 6 38 37)(2 34 33 5 45 27)(3 9 48 28 10 8)(4 7 13 44 32 14)(11 24 43 29 21 12)(15 20 47 25 17 16)(18 39 42 26 40 23)(19 22 35 46 30 36)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,41,31,6,38,37)(2,34,33,5,45,27)(3,9,48,28,10,8)(4,7,13,44,32,14)(11,24,43,29,21,12)(15,20,47,25,17,16)(18,39,42,26,40,23)(19,22,35,46,30,36)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,41,31,6,38,37)(2,34,33,5,45,27)(3,9,48,28,10,8)(4,7,13,44,32,14)(11,24,43,29,21,12)(15,20,47,25,17,16)(18,39,42,26,40,23)(19,22,35,46,30,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,41,31,6,38,37),(2,34,33,5,45,27),(3,9,48,28,10,8),(4,7,13,44,32,14),(11,24,43,29,21,12),(15,20,47,25,17,16),(18,39,42,26,40,23),(19,22,35,46,30,36)]])

Matrix representation of C22.S5 in GL4(𝔽5) generated by

2231
1012
2140
3034
,
3400
0333
4014
0133
G:=sub<GL(4,GF(5))| [2,1,2,3,2,0,1,0,3,1,4,3,1,2,0,4],[3,0,4,0,4,3,0,1,0,3,1,3,0,3,4,3] >;

C22.S5 in GAP, Magma, Sage, TeX

C_2^2.S_5
% in TeX

G:=Group("C2^2.S5");
// GroupNames label

G:=SmallGroup(480,953);
// by ID

G=gap.SmallGroup(480,953);
# by ID

Export

Character table of C22.S5 in TeX

׿
×
𝔽